- Отраслевые задачи оптимального планирования и размещения производства
-
Отраслевые задачи оптимального планирования и размещения производства [sectoral planning problems] — экономико-математические задачи расчета оптимальных направлений развития отраслей (в ряде случаев — подотраслей и производств). Наибольшее развитие получили в условиях т.н. отраслевой системы управления в бывш. СССР в 70-х — 80-х гг. При этом, как правило, достигался экономический эффект от 5 до 15% (для сопоставимых условий) по сравнению с традиционными методами. Эта работа опиралась на созданные усилиями ЦЭМИ, Института экономики и организации производства СО АН и СОПСа “Основные методические положения оптимизации развития и размещения производства” (1978 г.).
Методы решения отраслевых задач применимы (и действительно применяются во многих странах) при планировании деятельности крупных концернов, корпораций, фирм, при государственном программировании и планировании развития экономики. Решением задач отраслевой оптимизации достигаются следующие цели (они по-разному комбинируются в разных задачах): выбор наиболее экономичного варианта строительства, реконструкции и расширения новых предприятий, выбор их территориального размещения, расчет их оптимальных размеров, оптимальная специализация производства и установление кооперационных связей, выбор наиболее совершенной технологии и др. Важная область отраслевой оптимизации — выбор наилучшей номенклатуры выпускаемых изделий с учетом различий экономического эффекта от их применения для различных целей («Задачи оптимизации структуры производства«).
В качестве критерия оптимальности в большинстве отраслевых задач выступает минимум затрат на заданный объем конечного продукта рассматриваемой производственной системы. Применяются экономико-математические модели разных типов: динамические и статические, детерминированные и вероятностные, однопродуктовые и многопродуктовые, с дискретными и непрерывными переменными, производственные функции, производственно-транспортные задачи и, наконец, — по характеру отображения хозяйственных связей — матричные и сетевые модели.
Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело. Л. И. Лопатников. 2003.